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Synchronization and resonance in a driven system of coupled oscillators
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We study the noise effects in a driven system of globally coupled oscillators, with particular attention to the
interplay between driving and noise. The self-consistency equation for the order parameter, which measures the
collective synchronization of the system, is derived; it is found that the total order parameter decreases
monotonically with noise, indicating overall suppression of synchronization. Still, for large coupling strengths,
there exists an optimal noise level at which the periodic~ac! component of the order parameter reaches its
maximum. The response of the phase velocity is also examined and found to display resonance behavior.
@S1063-651X~99!14310-1#
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I. INTRODUCTION

The set of coupled nonlinear oscillators serves as a pr
type model for a variety of self-organizing systems in ph
ics and in other sciences, which display the remarkable p
nomena of collective synchronization@1–4#. Due to analytic
simplicity and some physical as well as biological applic
tions, the system with global coupling has been mostly st
ied both analytically and numerically@5–9#. Here external
periodic driving may induce characteristic mode locking
each oscillator, leading the system to display periodic s
chronization@10#. In such a driven system, the presence
noise raises another interesting possibility ofstochastic reso-
nance~SR!, which leads to the amplification of the respon
of the system by cooperative interactions between the n
and external periodic driving@11#. The SR phenomena
which have various practical applications@12–17#, have
been investigated in systems with relatively few degrees
freedom, and observed in bistable systems and also in
tems with periodic potentials@14#. On the other hand, the SR
effects have hardly been examined in a system with m
degrees of freedom such as the system of coupled oscilla
@18#.

In this paper we consider a system of globally coup
stochastic oscillators, driven periodically, and investigate
interplay of noise and periodic driving, with particular atte
tion to the possibility of stochastic resonance. For this p
pose, it is crucial to consider appropriate responses of
system to the periodic forcing. Here we consider the
sponse of the phase velocity, as well as the order param
which describes the phase synchronization. We first de
the self-consistency equation for the order parameter and
vestigate the behavior of the order parameter in the pres
of noise. It is found that the total order parameter, wh
consists of the time-independent~dc! and periodic~ac! com-
ponents, decreases monotonically with noise, indicating
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overall suppression of phase synchronization. The ac com
nent, on the other hand, may first increase as noise gr
from zero, and reach its maximum at a finite noise lev
Such SR-like behavior is also observed in the response o
phase velocity; at low noise levels, the noise subtrac
power spectrum of the phase velocity tends to increase w
noise.

This paper consists of six sections. Section II introduc
the driven system of coupled oscillators subject to rand
noise. The recurrence relation for the Fourier component
obtained. In Sec. III, we use the recurrence relation obtai
in Sec. II, and derive the self-consistency equation for
order parameter. The set of coupled equations of motion
the system is transformed into a Fokker-Planck equation
the corresponding probability density is expanded as a F
rier series. Sections IV and V are devoted to the investiga
of the responses of the phase and of the phase velocity
spectively, to the external driving. In spite of the over
suppression of synchronization, the ac component of the
der parameter, corresponding to the phase response, as
as the response of the phase velocity is revealed to dis
SR-like behavior. Finally, a brief summary is given in Se
VI.

II. DRIVEN SYSTEM OF COUPLED OSCILLATORS

The set of equations of motion governing the dynamics
the system ofN coupled oscillators is given by

ḟ i1
K

N (
j 51

N

sin~f i2f j !

5v i1I i cosVt1G i~ t ! ~ i 51,2, . . . ,N!, ~1!

wheref i represents the phase of thei th oscillator. The sec-
ond term on the left-hand side corresponds to the glo
coupling between oscillators, with strengthK/N. The first
and the second terms on the right-hand side describe
natural frequency of thei th oscillator and the periodic driv
s,
4014 © 1999 The American Physical Society
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ing on thei th oscillator, respectively. Finally,G i(t) is inde-
pendent white noise with zero mean and correlation,

^G i~ t !G j~ t8!&52Dd i j d~ t2t8!, ~2!

whereD(.0) plays the role of the ‘‘effective temperature
of the system. The natural frequencyv i is distributed over
the whole oscillators according to the distributiong(v),
which is assumed to be smooth and symmetric aboutv0.
Without loss of generality, we may takev0 to be zero and
assume thatg(v) is concave atv50, i.e., g9(0),0. The
periodic~ac! driving amplitudeI i may also vary for different
oscillators, while the frequencyV of the driving is assumed
to be uniform for all oscillators. In the absence of noiseD
50), Eq. ~1! precisely reduces to the set of equations
motion studied in Ref.@10#. The set of equations of motio
in Eq. ~1! describes a superconducting wire network@19# and
may also be regarded as the mean-field version of an arra
resistively shunted junctions, which serves as a comm
model for describing the dynamics of superconducting arr
@20#. In these cases, the two terms on the right-hand sid
Eq. ~1! correspond to the combined direct and alternat
current bias.

Collective behavior of such anN-oscillator system is con
veniently described by the complexorder parameter

C[
1

N (
j 51

N

eif j5Deiu, ~3!

where nonvanishingC indicates emergence of synchroniz
tion. Note that the synchronized state corresponds to the
perconducting state with global phase coherence in the
of the superconducting network or array. The order para
eter defined in Eq.~3! allows us to reduce Eq.~1! into a
singledecoupled equation

ḟ i1KD sin~f i2u!5v i1I i cosVt1G i~ t !.

We then seek the stationary solution withu being constant,
which is possible due to the symmetry of the distribution
v i and I i about zero. Redefiningf i2u asf i and suppress
ing indices, we obtain the reduced equation of motion

ḟ1KD sinf5v1I cosVt1G~ t !, ~4!

which depends explicitly on the order parameter. In t
manner the order parameterD, defined in terms of the phas
via Eq. ~3!, in turn determines the behavior of the phase
Eq. ~4!, and can thus be obtained by imposing se
consistency, as discussed in Sec. III. Note here thatD, in
general, depends periodically on time due to the perio
driving; this allows the Fourier expansion

D5D01(
s51

`

Ds cos~sVt1as!, ~5!

with appropriate phasesas , where D0 is the time-
independent~dc! component andDs is the time-dependen
~ac! one due to the periodic forcing.

A convenient way to deal with a set of Langevin equ
tions is to introduce an appropriate probability density and
resort to the associated Fokker-Planck equation@21#. In gen-
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eral, the set ofN Langevin equations~1! makes it necessary
to consider theN-oscillator probability densityP($f i%,t)
and the corresponding Fokker-Planck equation@9#. In the
system with global coupling, however, the set in Eq.~1!
naturally reduces to the single Langevin equation~4!, as
shown above. This in turn leads to the Fokker-Planck eq
tion for the single-oscillator probability densityP(f,t) with
the self-consistency for the order parameter explicitly i
posed, which has been considered in the absence of dri
@8#.

The Fokker-Planck equation for the probability dens
P(f,t) reads@21#

]P

]t
5

]

]f F S ]V~f!

]f
2I cosVt D PG1D

]2P

]f2
, ~6!

whereV(f)[2KD cosf2vf is the washboard potentia
Unlike the system without driving (I 50), the stationary so-
lution of which has been obtained@8#, Eq. ~6! does not allow
such a simple stationary solution. We thus use the periodi
of the system and expand the probability density as a Fou
series

P~f,t !5 (
n52`

`

Cn~ t !einf, ~7!

which, upon substitution into Eq.~6!, yields

Ċn~ t !52@ in~v1I cosVt !1n2D#Cn~ t !

2
n

2
KD~ t !Cn11~ t !1

n

2
KD~ t !Cn21~ t !. ~8!

Since the probability density should be real, we have
relation Cn5C2n* ; the normalization condition
*0

2pP(f,t)df51 gives the constant termC051/2p. The
differential recurrence relation in Eq.~8! can be written in
the form of an integral recurrence equation

Cn~ t !5Cn~0!expF2 inS vt1
I

V
sinVt D2n2DtG

2
n

2
K expF2 inS vt1

I

V
sinVt D2n2DtG

3E
0

t

dt8D~ t8!@Cn11~ t8!2Cn21~ t8!#

3expF inS vt81
I

V
sinVt8D1n2Dt8G , ~9!

which is of the same form as the equation for a single os
lator @22#, except for that, here, self-consistency for the ord
parameter is required.

III. SELF-CONSISTENCY EQUATION
FOR THE ORDER PARAMETER

In this section we derive the self-consistency equation
the order parameter, which describes the response of
phase and determines the collective behavior of the sys
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We suppose that the periodic driving amplitudeI is distrib-
uted according tof (I ), independently of the natural fre
quencyv. Recalling thatf in Eq. ~4! in fact representsf
2u, we have the self-consistency equation

D5
1

N (
j

eif j

5E
2`

`

dI f ~ I !E
2`

`

dvg~v!^eif&v,I , ~10!

where^•••&v,I denotes the average with givenv and I.
With the probability densityP(f,t), the expansion of

which is given by Eq.~7!, we compute the average

^eif&[E
0

2p

df eifP~f,t !52pC1* ~ t !, ~11!
m

c
rd

h

am
t

where the relationCn5C2n* has been used. Then Eq.~10!
leads straightforwardly to

D52pE
2`

`

dI f ~ I !E
2`

`

dvg~v!C1* ~ t !, ~12!

which gives the order parameter in terms of the Fourier
efficient C1(t). AssumingKD!1 near the transition to the
coherent state, we need to obtainC1 up to the order of
(KD)3. For this, we first computeC2 from Eq. ~9!, neglect-
ing C3, and substitute the obtainedC2 back into the equation
for C1, i.e., Eq.~9! with n51. At long times the transien
terms such as exp@2n2Dt# for nÞ0 vanish, and a lengthy
calculation yields
C1~ t !52
iK

8p (
s50

`

Ds(
l ,m

Jl ~x!Jm~x!F ei (l 2m1s)Vt1 ias

v1~ l 1s!V2 iD
1

ei (l 2m2s)Vt2 ias

v1~ l 2s!V2 iD G
2

iK 3

64p (
s,s8,s9

DsDs8Ds9 (
l ,l 8,m,m8,n,n8

Jl ~x!Jl 8~x!Jm~2x!Jm8~2x!Jn~x!Jn8~x!

3@ei (as2as82as9)F~ t;s,s8,s9!1ei (as1as82as9)F~ t;s,2s8,s9!

1ei (as2as81as9)F~ t;2s,s8,s!1ei (as1as81as9)F~ t;2s,2s8,s!

1ei (2as2as82as9)F~ t;s,s8,2s!1ei (2as1as82as9)F~ t;s,2s8,2s!

1ei (2as2as81as9)F~ t;2s,s8,2s9!1ei (2as2as82as9)F~ t;2s,2s8,2s9!#, ~13!

wherex[I /V, a0[0, and the functionF(t;s,s8,s9) depends on the indicesl , l 8, m, m8, n, andn8 as well as onv andV:

F~ t;s,s8,s9![
ei (l 2l 81m2m81n2n82s2s82s9)Vt

@v1~n81s!V2 iD #@2v1~m82n1n81s1s8!V24iD #

3
1

v1~ l 82m1m82n1n81s1s81s9!V2 iD
.

With the above expression forC1, Eq.~12! yields the explicit
form of the self-consistency equation for the order para
eter.

Comparing term by term in the resulting self-consisten
equation, we can determine each component of the o
parameter. Namely, the dc componentD0 is given by the
constant~zero-frequency! terms in the expansion ofC1(t).
The next componentD1 can be obtained from the terms wit
frequencyV, the componentD2 from the 2V terms, and so
on. For weak driving, the ac components of the order par
eter are much smaller than the dc component, leading to
simple self-consistency equation:

D'aKD02b~KD0!3 ~14!

with the coefficients
-

y
er

-
he

a5
i

2 (
l ,m

E dI f ~ I !Jl ~x!Jm~x!ei (l 2m)Vt

3E dv
g~v!

v1mV1 iD
,

b52
i

4 (
l ,l 8,m,m8,n,n8

E dI f ~ I !Jl ~x!Jl 8~x!Jm~2x!

3Jm8~2x!Jn~x!Jn8~x!ei (l 82l 1m82m1n82n)Vt

3E dv
g~v!

@v1n8V1 iD #@2v1~m81n82n!V14iD #

3
1

v1~ l 81m82m1n82n!V1 iD
. ~15!
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In the simple case of no external driving (I 50) and noise
(D→0), the representationpd(v)5D(v21D2)21 in the
limit D→0, together with the symmetry ofg(v), reduces
Eq. ~15! to a5(p/2)g(0) andb52(p/16)g9(0), which in-
deed reproduces the self-consistency equation obtaine
Ref. @5#.

Solving Eq.~14!, we obtain the collective behavior of th
system, which has been analyzed in Ref.@10#; for small K,
t

n
th
th
or
-
e

in

only the trivial solutionD50 exists. On the other hand, fo
K>Kc[1/a0, Eq. ~14! also allows the nontrivial solution
with the dc component

D05D1[
Ab0K~a0K21!

b0K2
, ~16!

where the constant coefficients are given by
a05
i

2 (
l

E dI f ~ I !Jl
2 ~x!E dv

g~v!

v1l V1 iD
,

b052
i

4 (
l ,m,m8,n,n8

E dI f ~ I !Jl ~x!Jm~2x!Jm8~2x!Jn~x!Jn8~x!Jl 1m1n2m82n8~x!

3E dv
g~v!

@v1n8V1 iD #@v1l V1 iD #@2v1~m81n82n!V14iD #
. ~17!
to

y
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Thus asK is increased beyondKc , the null solution becomes
unstable and the stable nontrivial solutionD1 ~accompanied
by the ac components! appears via a pitchfork bifurcation a
K5Kc @10#.

IV. NOISE EFFECTS ON SYNCHRONIZATION

To understand the cooperative effects of the driving a
noise on the response of the system, we examine in
section how the noise affects synchronization behavior of
system. For simplicity, we consider the weak-driving
high-frequency limit (x[I /V!1), expand the Bessel func
tions in Eq.~15! to the order ofx2, and perform the averag
over the distributionf (I ). This gives the coefficienta to the
order ofs I , the variance of the distributionf (I ):

a5
D

2 E dv
g~v!

v21D2
1

s I

8V2

3E dvg~v!FD~cos 2Vt22!

v21D2

2
D~cos 2Vt21!1~v1V!sin 2Vt

~v1V!21D2

2
D~cos 2Vt21!2~v2V!sin 2Vt

~v2V!21D2

1
D cos 2Vt1~v12V!sin 2Vt

2~v12V!212D2

1
D cos 2Vt2~v22V!sin 2Vt

2~v22V!212D2 G
[a01a2 cos~2Vt1a2!. ~18!
d
is
e

Similarly, a tedious but straightforward calculation leads
the coefficientb5b01b2 cos(2Vt1a2). Note that the sym-
metry of the distributionf (I ) about I 50 forbids the fre-
quencyV term, which is linear in the driving. Here it is eas
to observe thata0, which reads

a05
D

2 S 12
s I

2V2D E dv
g~v!

v21D2
1

Ds I

8V2E dvg~v!

3F 1

~v1V!21D2
1

1

~v2V!21D2G , ~19!

in general, decreases monotonically withD. Thus the critical
coupling strengthKc grows as the noise level is raised. Fi
ure 1 displays the monotonic increase ofKc(5a0

21) with the
noise levelD, for s I50.1 andV52.0. For the distribution
of natural frequencies, the Gaussian distribution with va
ancesv50.5 has been chosen.

FIG. 1. Critical coupling strength beyond which synchronizati
appears versus the noise level in the system with the driving
quencyV52 and the variancessv50.5 ands I50.1. The random
noise in the system increases monotonically the critical coup
strength, thus tending to suppress synchronization.
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With the coefficientsa and b obtained above, the orde
parameter can be obtained from Eq.~14! and its behavior in
the presence of noise can be investigated. Indeed the dc
ponent D0 given by Eq. ~16! is easily found to decreas
monotonically as the noise levelD is increased. On the othe
hand, it is too complicated to obtain analytically the expli
behavior of the ac componentDs (s>1). Further, the ana
lytical results are based on Eq.~14!, which is valid only near
the transition (K'Kc); this makes it desirable to obtain th
order parameter numerically. We have thus performed
merical simulations to compute the componentsD0 andD2.
Since the effects of external driving first appear in the co
ficientsa2 andb2, giving rise to the frequency 2V term, it is
relevant to investigateD2 as the response to the extern
driving. In the simulations, Eq.~1! has been integrated wit
discrete time steps ofDt50.01. At each run, we have use
Nt56048 time steps to compute the order parameter,
carding the data from the first 43103 steps, and varied both
Dt and Nt to verify that the stationary state was achieve
Finally, independent runs with 30 different distributions
the natural frequency and initial conditions have been p
formed, over which the averages have been taken. For
the distribution of the driving amplitudes and that of t
natural frequencies, we have chosen Gaussian distribut
with various values of variancess I andsv , only to find no
qualitative difference.

Figure 2 displays the obtained behaviors~a! of the dc
componentD0 and~b! of the ac componentD2 in the system
of N51000 oscillators, driven by frequencyV51.0738 and
with variancessv51.0 ands I51.0. The data represented b
empty and solid squares in Fig. 2 correspond to the coup
strengthK52.5 andK53.0, respectively. It is shown tha
for both values of the coupling strength,D0 decreases mono
tonically as the noise levelD is raised. Such monotonic be

FIG. 2. Behavior of the order parameter in the presence of no
The data represented by empty and solid squares correspond
coupling strengthK52.5 andK53.0, respectively.~a! The dc com-
ponentD0 for bothK52.5 andK53.0 is shown to decrease mono
tonically. ~b! The ac componentD2 for K52.5 decreases monoton
cally, while forK53.0 it displays a peak at a finite noise level. T
standard deviations of the data~not shown! range from 5 to 15 %,
and lines are merely guides to the eye.
m-

t

u-

f-
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r-
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havior is also exhibited byD2 for K52.5. ForK53.0, on the
other hand, Fig. 2~b! displays that the ac componentD2 first
increases with noise and reaches its maximum at a fi
value of the noise levelD. Similar nonmonotonic behavior o
D2 can be observed for larger values of the coupling stren
K, suggesting the presence of SR-like behavior in the or
parameter. Note, however, that the dc componentD0 is, in
general, dominant over the ac component, leading to
monotonic decrease of the total order parameter. It is t
concluded that noise tends to suppress monotonically
overall synchronization in the system.

V. RESPONSE OF THE PHASE VELOCITY

In this section we investigate the power spectrum of
phase velocity at the driving frequency, which convenien
describes the response of the phase velocity to the exte
driving. In the case of a superconducting wire network
array, the phase velocity can be identified with the volta
via the Josephson relation, and the power spectrum of
phase velocity simply corresponds to the voltage pow
spectrum under the combined direct and alternating cur
driving. Equations~4! and~7! give the average phase velo
ity of a single oscillator in terms of ImC1, the imaginary part
of C1:

^ḟ&[E
0

2p

dfP~f,t !ḟ

5v1I cosVt12pKD Im C1 , ~20!

which, upon substitution of Eq.~13! for Im C1, obtains the
simple form

^ḟ&5v1A cosVt1B sinVt1O~K2D0D1!, ~21!

with the amplitudes

A5I F12
K2D0

2

2V S v1V

~v1V!21D2
2

v2V

~v2V!21D2D G ,

B5
K2D0

2

2V
DI F 1

~v1V!21D2
2

2

v21D2
1

1

~v2V!21D2G .

The desired power spectrumSof the phase velocity at the
driving frequency is proportional to the square of the Four
component of frequencyV, i.e.,S(V)}A21B2. In the limit
D→0, the amplitude of the Fourier component approach

I 2F11
K2D0

2

v22V2G 2

1I 2
p2K4D0

4

4V2
@d~v1V!22d~v!1d~v2V!#2,

while it approachesI 2 in the limit D→`. It is of interest to
note that the amplitude in the noiseless limit can be eit
larger or smaller than that in the strong-noise limit, depe

e.
the
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ing on v andV; as the noise level is raised, the amplitu
tends to decrease from the noiseless value forv.V and
increase forv,V. Accordingly, for given driving fre-
quency, those oscillators with smaller/larger natural frequ
cies contribute to the increase/decrease of the amplitude
ward its asymptotic valueI 2. For small values of the
variancesv , for example, most oscillators should posse
the natural frequencyv,V, although there may still exis
some oscillators with frequencyv.V. The power spectrum
of the whole system, which is given by the sum of contrib
tions from all the oscillators, is then expected to increase
small D and to approach the asymptotic value which is p
portional toI 2. Unfortunately, however, the approximation
used on various stages of the analysis disallow a relia
analysis. In particular, the extrapolation to the limitD→0 is
untrustworthy since nonzero effective temperature (DÞ0)
has been assumed in solving the equation forP(f,t). It is
also obvious that the higher-order terms neglected in
analysis set a limit in the regime of validity, making it des
able to investigate the system by other means.

We have thus performed numerical simulations to obt
the power spectrum for various values of the coupl
strength and of the variance in the distributions of the natu
frequency and of the driving amplitude. We have again in
grated Eq.~1! for the system ofN51000 oscillators with
discrete time steps ofDt50.01, using at each runNt
56048 time steps to compute the power spectrum of
phase velocity and discarding the data from the first
3103 steps. The averages have been taken over 300 i
pendent runs with different distributions of the natural fr
quency and initial conditions. From the obtained time ser
we have computed the power spectrum by means of the
Fourier transform algorithm. To take into account the ba
ground noise, we have taken five nearest data points aro
the peak at the driving frequency in the power spectrum
performed the average to give the noise level.~The results
have been found not to change qualitatively even if ot
measure for the noise level is adopted.!

In Fig. 3 we present the obtained data: the backgro
noise subtracted power spectrum of the phase velocity a
driving frequency versus the noise level. For the distributio
of the natural frequency and of the driving amplitude, Gau

FIG. 3. Noise subtracted power spectrum of the phase velo
at the driving frequency. There appears an optimal noise leve
which the power spectrum reaches its maximum. The error b
have been estimated by the standard deviation and the line is m
a guide to the eye.
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ian ones have been chosen with variancessv50.5 ands I

50.2, respectively, while the coupling strengthK52.5 and
the driving frequencyV5p/1.024 have been taken. Remar
ably, Fig. 3 displays that the power spectrum increases as
noise level is raised from zero. Obviously, it does not ke
increasing monotonically with the noise, and there app
ently exists an optimal noise level at which the power sp
trum reaches its maximum. Beyond the optimal noise lev
the power spectrum first falls off gradually and satura
eventually toward its asymptotic value, although this beh
ior is somewhat obscured by the large fluctuations due
strong noise. Such a broad peak followed by gradual
crease has also been observed in the SR of another sy
@15#. It is thus suggested that the response of the phase
locity also displays SR-like behavior in the appropriate
gime. Since the phase velocity corresponds to the voltag
a superconducting system, this indicates that the noise
tracted power spectrum of the voltage displays such re
nance behavior.

VI. SUMMARY

We have studied the noise effects in a driven system
globally coupled oscillators, with emphasis on the interp
of noise and periodic driving. In particular, to investigate t
possibility of resonance behavior, we have considered
response of the phase velocity, as well as the order param
which describes the phase synchronization. The s
consistency equation for the order parameter, derived fr
the recurrence relation of the probability density, has be
shown to display monotonic decrease of the total order
rameter in the presence of noise. It has thus been conclu
that noise, in general, suppresses overall phase synchro
tion in the system, i.e., superconductivity tends to be d
turbed by noise present in a superconducting wire networ
array.

Nevertheless, it has also been revealed that for large c
pling strengths the ac component of the order paramete
creases with the noise level growing from zero and reac
its maximum at a finite noise level. Such resonance beha
has also been observed in the response of the phase velo
at low noise levels, the noise subtracted power spectrum
the phase velocity has been found to increase with no
displaying a broad peak at a finite noise level. As the no
level is raised further, the power spectrum appears to satu
toward its asymptotic value, although concealed by la
fluctuations due to strong noise. In conclusion, the ph
synchronization, describing the collective behavior of t
coupled-oscillator system, is suppressed monotonically in
presence of noise. Still, the responses of the phase and o
phase velocity can display nonmonotonic resonance beha
in the appropriate regime, which may be manifested b
broad resonance peak of the voltage power spectrum in
case of a superconducting system.

It is also of interest to note that the phase velocity
average may serve as a measure ofḊ/D, the rate of change
of phase synchronization. Accordingly, the resonance beh
ior in the response of the phase velocity suggests that
approach to the coherent state with synchronization can
accelerated by the presence of weak noise. Since the p
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synchronization corresponds to the memory retrieval in
network of neuronal oscillators@8,9#, the resonance behavio
may also imply the information processing assisted by w
noise in a biological system, e.g., the crayfish who appear
use such resonance to perceive an enemy quickly. The
tailed understanding of the resonance behavior and its im
cations to applicable physical and biological systems req
more extensive analytical and numerical investigatio
which are left for further study.
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